The University of Sydney

CHEMISTRY 1B - CHEM1102

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2009

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 12, 15, 23 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple	e choice	section
		Marks
Pages	Max	Gained
2-0	33	
Chant or	ACTION CO	oction

	Marks			
Page	Max	Gaine	d	Marker
10	7			
11	7			
13	8			
14	6			
16	6			
17	8			
18	5			
19	6			
20	3			
21	6			
22	5			
Total	67			

•	Explain why H ₂ SO ₄ is a stronger acid than H ₂ SO ₃ .	Marks 2
•	Explain why compounds of d -block elements are frequently paramagnetic. Use examples in your answer.	2
•	Provide a systematic name for cis -[Co(en) ₂ Cl ₂]Cl. Is this complex chiral? Explain your reasoning by drawing the structure of the complex. en = NH ₂ CH ₂ CH ₂ NH ₂ = ethane-1,2-diamine = ethylenediamine	3

CHEM1102 2009-N-3 22/08(a)

• Solution A consists of a 0.020 M aqueou C ₉ H ₈ O ₄) at 25 °C. Calculate the pH of S	as solution of aspirin (acetylsalicylic acid, Solution A. The pK_a of aspirin is 3.52.	Marks 7
		_
	Answer:	
At 25 °C, 1.00 L of Solution B consists (NaC ₉ H ₇ O ₄) dissolved in water. Calcula		
	Answer:	
	Allswei.	_
Solution B (200.0 mL) is mixed with So give Solution C. Calculate the pH of So	lution A (400.0 mL) and water (200.0 mL) to lution C after equilibration at 25 °C.	
	Answer:	
If you wanted to adjust the pH of Solution equal to 3.00, which component in the manneed to increase in concentration?		

pł	H 7.	enting the dissolution of FeCO ₃ in water at
	noring any hydrolysis of the ions, calcula ater at pH 7. The solubility product const	
	Ai	nswer:
R_{ℓ}	evolution was around 8.22. What was the	pH of the oceans before the Industrial e maximum concentration of Fe ³⁺ (aq) in
R ₍ th	evolution was around 8.22. What was the se ocean at this pH? The $K_{\rm sp}$ of Fe(OH) ₃ is	e maximum concentration of Fe ³⁺ (aq) in
R ₍ th	e ocean at this pH? The $K_{\rm sp}$ of Fe(OH) ₃ is	e maximum concentration of Fe ³⁺ (aq) in

Marks 6

•	Solid sulfur can exist in both rhombic and monoclinic forms. A portion of the phase diagram for sulfur is reproduced schematically below.			
	Pressure (mmHg)		Liquid Solid onoclinic 119 °C, 0.027 mmHg Vapour	
		Temp	perature (°C)	
	How many triple points are there in the phase diagram?			
	What phases are in	equilibrium at each of th	ne triple points?	
	What phase is stab and 760 mmHg pro	le at room temperature essure?		
	Can monoclinic sulfur exist in equilibrium with sulfur vapour at 1.0 atm pressure?			
	Which solid form	of sulfur is more dense? I	Explain your reasoning.	
•	Describe the phase from 90 °C to 130		sulfur at 0.01 mmHg is slowly warmed	

CHEM1102 2009-N-6 22/08(a)

An alloy is formed by combining elements A and B. The alloy has a face-centred cubic structure, with atoms of A at the corners and atoms of B in the faces. What is the formula of the alloy? Explain your reasoning.	Mar 3
Answer:	
Derive expressions for the equilibrium constants for the complexation of $Pb^{2+}(K_1)$ and of $Ca^{2+}(K_2)$ by $EDTA^{4-}$.	3
Briefly explain why the chelating agent, EDTA, is administered as $[Ca(EDTA)]^{2-}$ to treat lead poisoning and determine which of K_1 or K_2 must be greater for the therapy to be effective.	
	cubic structure, with atoms of A at the corners and atoms of B in the faces. What is the formula of the alloy? Explain your reasoning. Answer: Derive expressions for the equilibrium constants for the complexation of $Pb^{2+}(K_1)$ and of $Ca^{2+}(K_2)$ by $EDTA^{4-}$. Briefly explain why the chelating agent, $EDTA$, is administered as $[Ca(EDTA)]^{2-}$ to treat lead poisoning and determine which of K_1 or K_2 must be greater for the therapy

• Consider compound F shown below.	Marks 8
\mathbf{F}	o o
Assign the stereocentre in compound \mathbf{F} as (R) or (S) , explaining your reasoning.	
Assign the double bond stereochemistry in compound F , explaining your reasoning.	
	-
Duoyy the agenticures of company dE	-
Draw the enantiomer of compound F .	_
When compound F is reacted with hydrogen gas in the presence of a palladium catalyst, two stereoisomeric products, G and H , are formed. Draw these products.	
cumzyes, the state electronic products, of unit 22, and remined. 2 mm units of products.	_
	_
What word is used to describe the stereochemical relationship between G and H ?	

Marks 5

• Bromide **A** undergoes a reaction with hydroxide ions (OH⁻) to produce alcohol **C**. Complete the mechanism by adding curly arrows to illustrate the bonding changes that take place in the conversion of **A** to **B** and from **B** to **C**.

What is the name of the reaction taking place when $\bf A$ is converted to $\bf C$ via carbocation intermediate $\bf B$?

What is the stereochemical outcome of this reaction? Give reasons for your answer.

Alcohol C can be further reacted with reagent D to generate ester E. Provide a structure of a suitable reagent D for the synthesis of ester E from alcohol C.

• Consider the following reaction sequence.

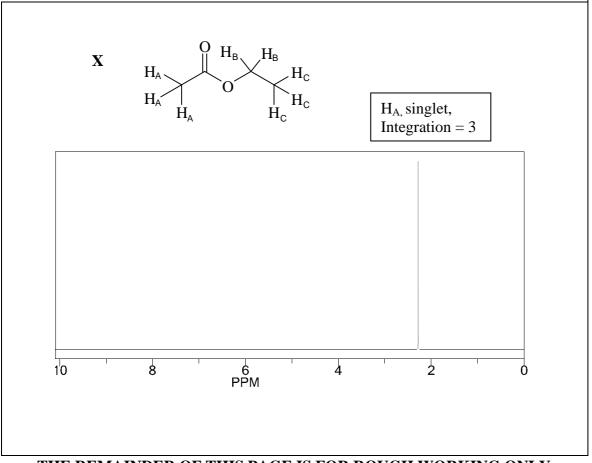
Marks 6

Compound K below can be converted into two different intermediates, L and M, which can react together to give compound N and the inorganic byproduct HCl. Give the reagents A and B and draw the structure of the intermediates L and M.

A	В
L	M
L	141

• Give the constitutional formula(s) of the organic products formed in each of the following reactions

Marks 3


$$OCH_3$$
 OCH_3
 Br

NaCN

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Sketch the resonances you would expect to observe for protons H_B and H_C in the 1H NMR spectrum of compound \mathbf{X} . Ensure that the approximate chemical shifts, as well as peak splittings and signal integrations are incorporated in your answer. (The resonance for H_A is provided as a guide.)

Marks 6

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks 5

• Devise a synthesis of propylbenzene (V) using propanal (T) and bromobenzene (U) as starting materials. Provide any intermediate structures and reagents. (Hint: More than one step is required.)

22/08(b) November 2009

CHEM1102 - CHEMISTRY 1B DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19}$ C

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$\begin{array}{lll} 1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa} & 1 \text{ Pa} = 1 \text{ N m}^{-2} = 1 \text{ kg m}^{-1} \text{ s}^{-2} \\ 0 \text{ °C} = 273 \text{ K} & 1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq} \\ 1 \text{ L} = 10^{-3} \text{ m}^3 & 1 \text{ Hz} = 1 \text{ s}^{-1} \\ 1 \text{ Å} = 10^{-10} \text{ m} & 1 \text{ tonne} = 10^3 \text{ kg} \\ 1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} & 1 \text{ W} = 1 \text{ J s}^{-1} \end{array}$$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^3	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

22/08(b) November 2009

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+}(aq) + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry					
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$					
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$					
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$					
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$					
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$					
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$					
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$					
Acids and Bases	Gas Laws					
$pK_{w} = pH + pOH = 14.00$	PV = nRT					
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$					
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$					
Radioactivity	Kinetics					
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$					
$A = \lambda N$	$k = Ae^{-Ea/RT}$					
$\ln(N_0/N_t) = \lambda t$	$\ln[A] = \ln[A]_{o} - kt$					
14 C age = 8033 ln(A_0/A_t) years	$\ln\frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)$					
Colligative Properties and Solutions	Thermodynamics and Equilibrium					
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$					
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$					
c = kp	$\Delta G^{\circ} = -RT \ln K$					
$\Delta T_{ m f} = K_{ m f} m$	$\Delta_{\mathrm{univ}} S^{\circ} = R \ln K$					
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$					
Miscellaneous	Mathematics					
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
$A = \varepsilon c l$	$ \ln x = 2.303 \log x $					
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2					
$4\pi\varepsilon_0 r$	Surface area of sphere = $4\pi r^2$					

PERIODIC TABLE OF THE ELEMENTS

2 3 5 10 11 12 13 14 18 1 4 7 8 15 17 6 16 2 HELIUM HYDROGEN Н He 1.008 4.003 3 4 5 8 9 6 10 LITHIUM BERYLLIUM BORON CARBON NITROGEN OXYGEN FLUORINE NEON \mathbf{C} N Ne Li Be B 0 F 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 14 15 12 13 16 17 18 SODIUM MAGNESIUM ALUMINIUM SILICON PHOSPHORUS SULFUR CHLORINE ARGON Si Na Mg P S Al Cl Ar 22.99 28.09 30.97 39.95 24.31 26.98 32.07 35.45 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUM CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE TRON COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE KRYPTON K Ti \mathbf{V} Fe Ca Sc Cr Mn Ni Cu Zn Ga Ge Se Br Kr Co As 39.10 55.85 72.59 74.92 40.08 44.96 47.88 50.94 52.00 54.94 58.93 58.69 63.55 65.39 69.72 78.96 79.90 83.80 37 38 39 42 43 47 48 50 52 53 54 40 41 44 45 46 49 51 RUBIDIUM STRONTIUM YTTRIUM ZIRCONIUM NIOBIUM MOLYBDENUM TECHNETIUM RUTHENIUM RHODIUM PALLADIUM SILVER CADMIUM INDIUM ANTIMONY TELLURIUM IODINE XENON Rb Sr Y Zr Nb Tc Ru Rh Pd Cd Sn Sb Te Ι Xe Mo Ag In 85.47 87.62 88.91 91.22 92.91 [98.91] 102.91 118.69 121.75 127.60 95.94 101.07 106.4 107.87 112.40 114.82 126.90 131.30 55 72 73 77 82 57-71 74 75 76 78 79 80 81 83 84 85 86 56 CAESIUM BARIUM HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM GOLD MERCURY THALLIUM LEAD BISMUTH POLONIUM ASTATINE RADON Cs Hf \mathbf{W} Pb Ba Ta Re Os Ir Pt Au Hg Tl Bi Po At Rn 132.91 137.34 178.49 180.95 183.85 186.2 190.2 192.22 195.09 196.97 200.59 204.37 207.2 208.98 [210.0] [210.0] [222.0] 87 88 89-103 104 105 107 108 109 110 111 106 FRANCIUM RADIUM THERFORDIU BOHRIUM HASSIUM MEITNERIUM ARMSTADTIUM ROENTGENIUM DUBNIUM SEABORGIUM Fr Rf Bh Hs Rg Ra Db Sg Mt Ds

LANTHANOID S

ACTINOIDS

[223.0]

[226.0]

[261]

[262]

[266]

[262]

[265]

[266]

OID	57 LANTHANUM La	58 CERIUM Ce	59 Praseodymium Pr	60 NEODYMIUM Nd	61 PROMETHIUM Pm	62 SAMARIUM Sm	63 Europium Eu	64 GADOLINIUM Gd	65 TERBIUM Tb	66 DYSPROSIUM Dy	67 HOLMIUM Ho	68 Erbium Er	69 THULIUM Tm	70 YTTERBIUM Yb	71 Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
S	89 actinium	90 THORIUM	91 PROTACTINIUM	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	96 curium	97 BERKELLIUM	98 CALIFORNIUM	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

[271]

[272]